Saccharides

Vladimíra Kvasnicová

SACCHARIDES (carbohydrates, glycides)

GLUCOSE - central role

The figures have been adopted from Harper's Biochemistry a z <u>http://www.vuw.ac.nz/staff/paul_teesdale-</u> <u>spittle/organic/chiral_web/images/fig1_5d.gif</u> (April 2007)

The figure is found at http://astrobiology.berkeley.edu/Mars101/pix/image003.jpg (April 2007)

number of isomers for
$$n(C^*) = 2^n$$

n = 1, 2, 3, ...

The figure is found at <u>http://webphysics.davidson.edu/Alumni/bedenius/liqcry/chiral.gif</u> (April 2007)

Classification of monosaccharides

	aldoses (-CHO)	ketoses (>C=O)
trioses (C3)	glyceraldehyde	dihydroxyacetone
tetroses (C4)	erythrose	erythr <u>ul</u> ose
pentoses (C5)	rib <mark>ose</mark>	rib <u>ul</u> ose
hexoses (C6)	glucose	fructose

Isomers of monosaccharides

 during dissolving of a saccharide in water the equilibrium between anomers is established = mutarotation (optical rotation of anomers is not the same)

The figure is found at http://www.cbs.umn.edu/bmbb/brl/carb/CarbTJSA/Haworth/TwoAnomers.jpg (October 2007)

1) α -D-glucopyranose

5) D-glucose

2) β -D-glucopyranose

4) β-D-gluco<u>furanose</u>

3) α -D-gluco<u>furanose</u>

D-Fructose

D-Galactose

Gal is found in lactose (milk sugar) Gal and Man and their derivatives are found in heteroglycosides

Exercise

 O_{∞}

HO-

H-

HO-

HO-

JΗ

-H

-OH

-H

-H

с́н₂он

ÇH₂OH

=0

-H

-H

ĊH₂OH

·ОН

Derivates of monosaccharides

- 2) oxidation of saccharides produces acids:
- aldaric acids (glucaric)
 both C1 and C6 is oxidized = dicarboxylic a.

3) deoxysaccharides are formed by reduction of secondary -OH group

2-deoxy-D-ribose

4) amino saccharides contain one amino group instead of one -OH group

D-glucose amine

amino saccharides are often acetylated

(found in heteroglycosides)

The figure has been adopted from J.Koolman, K.H.Röhm / Color Atlas of Biochemistry, 2nd edition, Thieme 2005

Atlas of Biochemistry, 2nd edition, Thieme 2005

The figure is found at http://www.nmc.edu/~koverbaugh/bio115/Image14.gif (October 2007)

The figure is found at http://www.thebestlinks.com/images/f/f5/ATP.png (October 2007)

DISACCHARIDES

α-Glc(1→4)Glc

2. Lactose β-D-Galactopyranosyl-(1→4)-D-glucopyranose

 β -Gal(1 \rightarrow 4)Glc

A LANGE

3. Sucrose α-D-Glucopyranosyl-(1◀►2)-β-D-fructofuranoside

α-Glc(1→2)β- Fru

The figure has been adopted from J.Koolman, K.H.Röhm / Color Atlas of Biochemistry, 2nd edition, Thieme 2005

POLYSACCHARIDES

- homopolysaccharides starch, glycogen, cellulose, inuline
- heteropolysaccharides glycoproteins, proteoglycans

- storage
 starch,
 glycogen,
 inuline
- structural cellulose, proteoglycans

- branched
- unbranched

amylose (maltose)_n

amylopectine

 α (1 \rightarrow 4) glycosidic bonds

 $\alpha(1\rightarrow 4)$ glycosidic bonds $\alpha(1\rightarrow 6)$ glycosidic bonds

The figure is found at http://students.ou.edu/R/Ben.A.Rodriguez-1/glycogen.gif (October 2007)

The figures are found at <u>http://web.chemistry.gatech.edu/~williams/bCourse_Information/6521/carbo/glu/cellulose_int_2.jpg</u> <u>http://www.kjemi.uio.no/14_skole/modul/Evina_organisk/Org_K3fig14_cellulose.JPG</u> (October 2007)

heteroglycosides = complex saccharides

- proteoglycans
- glycoproteins
- glycolipids

The figure has been adopted from: J.Koolman, K.H.Röhm / Color Atlas of Biochemistry, 2nd edition, Thieme 2005

The figure is found at <u>http://www.grandmeadows.com/archives/truth1.gif</u> (October 2007)

GLYCOPROTEINS

The figure has been adopted from J.Koolman, K.H.Röhm / Color Atlas of Biochemistry, 2nd edition, Thieme 2005